Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Cross Talk between TbTim50 and PIP39, Two Aspartate-Based Protein Phosphatases, Maintains Cellular Homeostasis in Trypanosoma brucei.

Identifieur interne : 000116 ( Main/Exploration ); précédent : 000115; suivant : 000117

The Cross Talk between TbTim50 and PIP39, Two Aspartate-Based Protein Phosphatases, Maintains Cellular Homeostasis in Trypanosoma brucei.

Auteurs : Anuj Tripathi [États-Unis] ; Ujjal K. Singha [États-Unis] ; Victor Paromov [États-Unis] ; Salisha Hill [États-Unis] ; Siddharth Pratap [États-Unis] ; Kristie Rose [États-Unis] ; Minu Chaudhuri [États-Unis]

Source :

RBID : pubmed:31391278

Descripteurs français

English descriptors

Abstract

Trypanosoma brucei, the infectious agent of a deadly disease known as African trypanosomiasis, undergoes various stresses during its digenetic life cycle. We previously showed that downregulation of T. brucei mitochondrial inner membrane protein translocase 50 (TbTim50), an aspartate-based protein phosphatase and a component of the translocase of the mitochondrial inner membrane (TIM), increased the tolerance of procyclic cells to oxidative stress. Using comparative proteomics analysis and further validating the proteomics results by immunoblotting, here we discovered that TbTim50 downregulation caused an approximately 5-fold increase in the levels of PIP39, which is also an aspartate-based protein phosphatase and is primarily localized in glycosomes. A moderate upregulation of a number of glycosomal enzymes was also noticed due to TbTim50 knockdown. We found that the rate of mitochondrial ATP production by oxidative phosphorylation decreased and that substrate-level phosphorylation increased due to depletion of TbTim50. These results were correlated with relative increases in the levels of trypanosome alternative oxidase and hexokinase and a reduced-growth phenotype in low-glucose medium. The levels and activity of the mitochondrial superoxide dismutase and glutaredoxin levels were increased due to TbTim50 knockdown. Furthermore, we show that TbTim50 downregulation increased the cellular AMP/ATP ratio, and as a consequence, phosphorylation of AMP-activated protein kinase (AMPK) was increased. Knocking down both TbTim50 and TbPIP39 reduced PIP39 levels as well as AMPK phosphorylation and reduced T. brucei tolerance to oxidative stress. These results suggest that TbTim50 and PIP39, two protein phosphatases in mitochondria and glycosomes, respectively, cross talk via the AMPK pathway to maintain cellular homeostasis in the procyclic form of T. bruceiIMPORTANCETrypanosoma brucei, the infectious agent of African trypanosomiasis, must adapt to strikingly different host environments during its digenetic life cycle. Developmental regulation of mitochondrial activities is an essential part of these processes. We have shown previously that mitochondrial inner membrane protein translocase 50 in T. brucei (TbTim50) possesses a dually specific phosphatase activity and plays a role in the cellular stress response pathway. Using proteomics analysis, here we have elucidated a novel connection between TbTim50 and a protein phosphatase of the same family, PIP39, which is also a differentiation-related protein localized in glycosomes. We found that these two protein phosphatases cross talk via the AMPK pathway and modulate cellular metabolic activities under stress. Together, our results indicate the importance of a TbTim50 and PIP39 cascade for communication between mitochondria and other cellular parts in regulation of cell homeostasis in T. brucei.

DOI: 10.1128/mSphere.00353-19
PubMed: 31391278
PubMed Central: PMC6686227


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Cross Talk between TbTim50 and PIP39, Two Aspartate-Based Protein Phosphatases, Maintains Cellular Homeostasis in Trypanosoma brucei.</title>
<author>
<name sortKey="Tripathi, Anuj" sort="Tripathi, Anuj" uniqKey="Tripathi A" first="Anuj" last="Tripathi">Anuj Tripathi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Singha, Ujjal K" sort="Singha, Ujjal K" uniqKey="Singha U" first="Ujjal K" last="Singha">Ujjal K. Singha</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Paromov, Victor" sort="Paromov, Victor" uniqKey="Paromov V" first="Victor" last="Paromov">Victor Paromov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hill, Salisha" sort="Hill, Salisha" uniqKey="Hill S" first="Salisha" last="Hill">Salisha Hill</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, Vanderbilt University, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pratap, Siddharth" sort="Pratap, Siddharth" uniqKey="Pratap S" first="Siddharth" last="Pratap">Siddharth Pratap</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rose, Kristie" sort="Rose, Kristie" uniqKey="Rose K" first="Kristie" last="Rose">Kristie Rose</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, Vanderbilt University, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chaudhuri, Minu" sort="Chaudhuri, Minu" uniqKey="Chaudhuri M" first="Minu" last="Chaudhuri">Minu Chaudhuri</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA mchaudhuri@mmc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31391278</idno>
<idno type="pmid">31391278</idno>
<idno type="doi">10.1128/mSphere.00353-19</idno>
<idno type="pmc">PMC6686227</idno>
<idno type="wicri:Area/Main/Corpus">000122</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000122</idno>
<idno type="wicri:Area/Main/Curation">000122</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000122</idno>
<idno type="wicri:Area/Main/Exploration">000122</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Cross Talk between TbTim50 and PIP39, Two Aspartate-Based Protein Phosphatases, Maintains Cellular Homeostasis in Trypanosoma brucei.</title>
<author>
<name sortKey="Tripathi, Anuj" sort="Tripathi, Anuj" uniqKey="Tripathi A" first="Anuj" last="Tripathi">Anuj Tripathi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Singha, Ujjal K" sort="Singha, Ujjal K" uniqKey="Singha U" first="Ujjal K" last="Singha">Ujjal K. Singha</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Paromov, Victor" sort="Paromov, Victor" uniqKey="Paromov V" first="Victor" last="Paromov">Victor Paromov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hill, Salisha" sort="Hill, Salisha" uniqKey="Hill S" first="Salisha" last="Hill">Salisha Hill</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, Vanderbilt University, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pratap, Siddharth" sort="Pratap, Siddharth" uniqKey="Pratap S" first="Siddharth" last="Pratap">Siddharth Pratap</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rose, Kristie" sort="Rose, Kristie" uniqKey="Rose K" first="Kristie" last="Rose">Kristie Rose</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, Vanderbilt University, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chaudhuri, Minu" sort="Chaudhuri, Minu" uniqKey="Chaudhuri M" first="Minu" last="Chaudhuri">Minu Chaudhuri</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA mchaudhuri@mmc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mSphere</title>
<idno type="eISSN">2379-5042</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenylate Kinase (metabolism)</term>
<term>Homeostasis (MeSH)</term>
<term>Mitochondria (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Phosphoprotein Phosphatases (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Proteomics (MeSH)</term>
<term>Protozoan Proteins (metabolism)</term>
<term>Trypanosoma brucei brucei (cytology)</term>
<term>Trypanosoma brucei brucei (enzymology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adenylate kinase (métabolisme)</term>
<term>Homéostasie (MeSH)</term>
<term>Mitochondries (MeSH)</term>
<term>Phosphoprotein Phosphatases (métabolisme)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protéines de protozoaire (métabolisme)</term>
<term>Protéomique (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Trypanosoma brucei brucei (cytologie)</term>
<term>Trypanosoma brucei brucei (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenylate Kinase</term>
<term>Phosphoprotein Phosphatases</term>
<term>Protozoan Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Trypanosoma brucei brucei</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Trypanosoma brucei brucei</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Trypanosoma brucei brucei</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Trypanosoma brucei brucei</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adenylate kinase</term>
<term>Phosphoprotein Phosphatases</term>
<term>Protéines de protozoaire</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Homeostasis</term>
<term>Mitochondria</term>
<term>Oxidative Stress</term>
<term>Phosphorylation</term>
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Homéostasie</term>
<term>Mitochondries</term>
<term>Phosphorylation</term>
<term>Protéomique</term>
<term>Stress oxydatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Trypanosoma brucei</i>
, the infectious agent of a deadly disease known as African trypanosomiasis, undergoes various stresses during its digenetic life cycle. We previously showed that downregulation of
<i>T. brucei</i>
mitochondrial inner membrane protein translocase 50 (TbTim50), an aspartate-based protein phosphatase and a component of the translocase of the mitochondrial inner membrane (TIM), increased the tolerance of procyclic cells to oxidative stress. Using comparative proteomics analysis and further validating the proteomics results by immunoblotting, here we discovered that TbTim50 downregulation caused an approximately 5-fold increase in the levels of PIP39, which is also an aspartate-based protein phosphatase and is primarily localized in glycosomes. A moderate upregulation of a number of glycosomal enzymes was also noticed due to TbTim50 knockdown. We found that the rate of mitochondrial ATP production by oxidative phosphorylation decreased and that substrate-level phosphorylation increased due to depletion of TbTim50. These results were correlated with relative increases in the levels of trypanosome alternative oxidase and hexokinase and a reduced-growth phenotype in low-glucose medium. The levels and activity of the mitochondrial superoxide dismutase and glutaredoxin levels were increased due to TbTim50 knockdown. Furthermore, we show that TbTim50 downregulation increased the cellular AMP/ATP ratio, and as a consequence, phosphorylation of AMP-activated protein kinase (AMPK) was increased. Knocking down both TbTim50 and TbPIP39 reduced PIP39 levels as well as AMPK phosphorylation and reduced
<i>T. brucei</i>
tolerance to oxidative stress. These results suggest that TbTim50 and PIP39, two protein phosphatases in mitochondria and glycosomes, respectively, cross talk via the AMPK pathway to maintain cellular homeostasis in the procyclic form of
<i>T. brucei</i>
<b>IMPORTANCE</b>
<i>Trypanosoma brucei</i>
, the infectious agent of African trypanosomiasis, must adapt to strikingly different host environments during its digenetic life cycle. Developmental regulation of mitochondrial activities is an essential part of these processes. We have shown previously that mitochondrial inner membrane protein translocase 50 in
<i>T. brucei</i>
(TbTim50) possesses a dually specific phosphatase activity and plays a role in the cellular stress response pathway. Using proteomics analysis, here we have elucidated a novel connection between TbTim50 and a protein phosphatase of the same family, PIP39, which is also a differentiation-related protein localized in glycosomes. We found that these two protein phosphatases cross talk via the AMPK pathway and modulate cellular metabolic activities under stress. Together, our results indicate the importance of a TbTim50 and PIP39 cascade for communication between mitochondria and other cellular parts in regulation of cell homeostasis in
<i>T. brucei</i>
.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31391278</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2379-5042</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
<Month>08</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>mSphere</Title>
<ISOAbbreviation>mSphere</ISOAbbreviation>
</Journal>
<ArticleTitle>The Cross Talk between TbTim50 and PIP39, Two Aspartate-Based Protein Phosphatases, Maintains Cellular Homeostasis in Trypanosoma brucei.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00353-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mSphere.00353-19</ELocationID>
<Abstract>
<AbstractText>
<i>Trypanosoma brucei</i>
, the infectious agent of a deadly disease known as African trypanosomiasis, undergoes various stresses during its digenetic life cycle. We previously showed that downregulation of
<i>T. brucei</i>
mitochondrial inner membrane protein translocase 50 (TbTim50), an aspartate-based protein phosphatase and a component of the translocase of the mitochondrial inner membrane (TIM), increased the tolerance of procyclic cells to oxidative stress. Using comparative proteomics analysis and further validating the proteomics results by immunoblotting, here we discovered that TbTim50 downregulation caused an approximately 5-fold increase in the levels of PIP39, which is also an aspartate-based protein phosphatase and is primarily localized in glycosomes. A moderate upregulation of a number of glycosomal enzymes was also noticed due to TbTim50 knockdown. We found that the rate of mitochondrial ATP production by oxidative phosphorylation decreased and that substrate-level phosphorylation increased due to depletion of TbTim50. These results were correlated with relative increases in the levels of trypanosome alternative oxidase and hexokinase and a reduced-growth phenotype in low-glucose medium. The levels and activity of the mitochondrial superoxide dismutase and glutaredoxin levels were increased due to TbTim50 knockdown. Furthermore, we show that TbTim50 downregulation increased the cellular AMP/ATP ratio, and as a consequence, phosphorylation of AMP-activated protein kinase (AMPK) was increased. Knocking down both TbTim50 and TbPIP39 reduced PIP39 levels as well as AMPK phosphorylation and reduced
<i>T. brucei</i>
tolerance to oxidative stress. These results suggest that TbTim50 and PIP39, two protein phosphatases in mitochondria and glycosomes, respectively, cross talk via the AMPK pathway to maintain cellular homeostasis in the procyclic form of
<i>T. brucei</i>
<b>IMPORTANCE</b>
<i>Trypanosoma brucei</i>
, the infectious agent of African trypanosomiasis, must adapt to strikingly different host environments during its digenetic life cycle. Developmental regulation of mitochondrial activities is an essential part of these processes. We have shown previously that mitochondrial inner membrane protein translocase 50 in
<i>T. brucei</i>
(TbTim50) possesses a dually specific phosphatase activity and plays a role in the cellular stress response pathway. Using proteomics analysis, here we have elucidated a novel connection between TbTim50 and a protein phosphatase of the same family, PIP39, which is also a differentiation-related protein localized in glycosomes. We found that these two protein phosphatases cross talk via the AMPK pathway and modulate cellular metabolic activities under stress. Together, our results indicate the importance of a TbTim50 and PIP39 cascade for communication between mitochondria and other cellular parts in regulation of cell homeostasis in
<i>T. brucei</i>
.</AbstractText>
<CopyrightInformation>Copyright © 2019 Tripathi et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tripathi</LastName>
<ForeName>Anuj</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Singha</LastName>
<ForeName>Ujjal K</ForeName>
<Initials>UK</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paromov</LastName>
<ForeName>Victor</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hill</LastName>
<ForeName>Salisha</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pratap</LastName>
<ForeName>Siddharth</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rose</LastName>
<ForeName>Kristie</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chaudhuri</LastName>
<ForeName>Minu</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA mchaudhuri@mmc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI125662</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mSphere</MedlineTA>
<NlmUniqueID>101674533</NlmUniqueID>
<ISSNLinking>2379-5042</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015800">Protozoan Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.4.3</RegistryNumber>
<NameOfSubstance UI="D000263">Adenylate Kinase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="D010749">Phosphoprotein Phosphatases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>mSphere. 2019 Sep 4;4(5):</RefSource>
<PMID Version="1">31484745</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000263" MajorTopicYN="N">Adenylate Kinase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="Y">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010749" MajorTopicYN="N">Phosphoprotein Phosphatases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015800" MajorTopicYN="N">Protozoan Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014346" MajorTopicYN="N">Trypanosoma brucei brucei</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">AMPK</Keyword>
<Keyword MajorTopicYN="Y">PIP39</Keyword>
<Keyword MajorTopicYN="Y">Tim50</Keyword>
<Keyword MajorTopicYN="Y">Trypanosoma brucei </Keyword>
<Keyword MajorTopicYN="Y">stress tolerance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31391278</ArticleId>
<ArticleId IdType="pii">4/4/e00353-19</ArticleId>
<ArticleId IdType="doi">10.1128/mSphere.00353-19</ArticleId>
<ArticleId IdType="pmc">PMC6686227</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2010 Sep;11(9):655-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Apr 30;10(6):431-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22543519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2009 Dec;9(24):5497-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19834910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23203871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2018 Dec;129:1-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30172747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Heart Assoc. 2017 Apr 21;6(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28432072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Feb;183:212-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22195596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Parasitol. 2009 Nov;123(3):250-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19647733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1986 Jun 2;157(2):441-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2940090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2016 Oct 11;17(3):660-670</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27732844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem Lett. 2013 Jan 3;4(1):78-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26291215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Jun;176(2):927-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17435247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2003;4(5):317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12734004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2865</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24305511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2003 Oct 15;321(2):263-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14511694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Nov 15;111(4):507-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12437924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Jul 21;292(29):12324-12338</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28550086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Metab. 2013 Feb 14;2(2):92-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24199155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasitol Int. 2005 Dec;54(4):243-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16115792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2003 Jun 15;414(2):294-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2009 Sep;8(9):1418-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19617393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 1999 Jun 25;101(1-2):161-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10413051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(1):44-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2016 Aug;32:46-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27177350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Nov 11;286(45):39130-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21930695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2015 Jan-Feb;199(1-2):9-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25791316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 1993 Jun;59(2):191-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8341318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 May 14;459(7244):213-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19444208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Parasitol Drugs Drug Resist. 2015 Jun 20;5(3):110-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26236582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Feb 1;288(5):3184-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23212919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jun 9;312(5779):1523-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16763150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Feb;33(2):337-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26474847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Feb 17;22(4):816-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12574118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 31;283(44):30401-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18684708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2015 Apr;96(2):220-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25630552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 May 30;283(22):14963-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18387941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):E1809-E1818</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29434039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jun 13;283(24):16342-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18430732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hortic Res. 2018 Jul 1;5:37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29977573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 1995 Feb;69(2):269-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7770090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 1997 Mar;85(1):99-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9108552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Nov 15;111(4):519-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12437925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Dec;165(4):2213-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14704198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2017 Jun 15;66(6):789-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28622524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1997;66:863-917</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9242927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Aug 13;15(3):399-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2002 Feb;190(2):160-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11807820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2006 Oct 23;175(2):293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17043136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2008 May;159(1):30-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18325611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Dec 19;7:13707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27991487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2008 Jan;18(1):12-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18068984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics Clin Appl. 2015 Dec;9(11-12):1021-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26109032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMB Rep. 2014 Apr;47(4):192-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24755554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2011 Aug 1;512(1):52-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21621504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 Jul;17(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10404161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 15;281(50):38365-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17035229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Apr;1840(4):1331-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24513455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 4;279(23):24813-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15044455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Sep 18;290(38):23226-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26240144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Nov 15;123(Pt 22):3849-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21048161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2014 Apr;115(4):632-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24453042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(10):e1003689</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24146622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 1998 Sep 1;95(1):53-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9763289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Apr 27;287(18):14480-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22408251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasitology. 2010 Dec;137(14):2007-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20663245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jan 28;307(5709):596-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15681389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mitochondrion. 2017 Mar;33:15-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27535110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Parasitol. 2006 Oct;22(10):484-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16920028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pathogens. 2017 Jun 28;6(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28657594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2018 Mar 16;122(6):877-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29700084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2010 Jun 15;24(12):1306-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20551176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Biol. 2017 May;7(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28539385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2001 Mar 21;266(1-2):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11290414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2018 May;15:532-547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29413965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Oct 4;262(4):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8893850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2001 Dec;8(12):1074-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11713477</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Tripathi, Anuj" sort="Tripathi, Anuj" uniqKey="Tripathi A" first="Anuj" last="Tripathi">Anuj Tripathi</name>
</region>
<name sortKey="Chaudhuri, Minu" sort="Chaudhuri, Minu" uniqKey="Chaudhuri M" first="Minu" last="Chaudhuri">Minu Chaudhuri</name>
<name sortKey="Hill, Salisha" sort="Hill, Salisha" uniqKey="Hill S" first="Salisha" last="Hill">Salisha Hill</name>
<name sortKey="Paromov, Victor" sort="Paromov, Victor" uniqKey="Paromov V" first="Victor" last="Paromov">Victor Paromov</name>
<name sortKey="Pratap, Siddharth" sort="Pratap, Siddharth" uniqKey="Pratap S" first="Siddharth" last="Pratap">Siddharth Pratap</name>
<name sortKey="Rose, Kristie" sort="Rose, Kristie" uniqKey="Rose K" first="Kristie" last="Rose">Kristie Rose</name>
<name sortKey="Singha, Ujjal K" sort="Singha, Ujjal K" uniqKey="Singha U" first="Ujjal K" last="Singha">Ujjal K. Singha</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000116 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000116 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31391278
   |texte=   The Cross Talk between TbTim50 and PIP39, Two Aspartate-Based Protein Phosphatases, Maintains Cellular Homeostasis in Trypanosoma brucei.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31391278" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020